69 research outputs found

    The Framing of Urban Sustainability Transformations

    Get PDF
    Transformational change is not always intentional. However, deliberate transformations are imperative to achieve the sustainable visions that future generations deserve. Small, unintentional tweaks will not be enough to overcome persistent and emergent urban challenges. Recent scholarship on sustainability transformations has evolved considerably, but there is no consensus on what qualifies transformational change. We describe variations in current discussions of intentional sustainability transformations in the literature and synthesize strategies from funding institutions’ recent requests for proposals for urban sustainability transformations. Research funding initiatives calling for transformational change are increasingly common and are an important driver of how transformational change is articulated in research-practice in cities. From this synthesis, we present seven criteria for transformational change that provide direction for framing and implementing transformational change initiatives

    Connectivity: insights from the U.S. Long Term Ecological Research Network

    Get PDF
    Ecosystems across the United States are changing in complex and surprising ways. Ongoing demand for critical ecosystem services requires an understanding of the populations and communities in these ecosystems in the future. This paper represents a synthesis effort of the U.S. National Science Foundation-funded Long-Term Ecological Research (LTER) network addressing the core research area of “populations and communities.” The objective of this effort was to show the importance of long-term data collection and experiments for addressing the hardest questions in scientific ecology that have significant implications for environmental policy and management. Each LTER site developed at least one compelling case study about what their site could look like in 50–100 yr as human and environmental drivers influencing specific ecosystems change. As the case studies were prepared, five themes emerged, and the studies were grouped into papers in this LTER Futures Special Feature addressing state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the “connectivity” theme and has examples from the Phoenix (urban), Niwot Ridge (alpine tundra), McMurdo Dry Valleys (polar desert), Plum Island (coastal), Santa Barbara Coastal (coastal), and Jornada (arid grassland and shrubland) sites. Connectivity has multiple dimensions, ranging from multi-scalar interactions in space to complex interactions over time that govern the transport of materials and the distribution and movement of organisms. The case studies presented here range widely, showing how land-use legacies interact with climate to alter the structure and function of arid ecosystems and flows of resources and organisms in Antarctic polar desert, alpine, urban, and coastal marine ecosystems. Long-term ecological research demonstrates that connectivity can, in some circumstances, sustain valuable ecosystem functions, such as the persistence of foundation species and their associated biodiversity or, it can be an agent of state change, as when it increases wind and water erosion. Increased connectivity due to warming can also lead to species range expansions or contractions and the introduction of undesirable species. Continued long-term studies are essential for addressing the complexities of connectivity. The diversity of ecosystems within the LTER network is a strong platform for these studies

    Heat exposure and resilience planning in Atlanta, Georgia

    Get PDF
    The City of Atlanta, Georgia, is a fast-growing urban area with substantial economic and racial inequalities, subject to the impacts of climate change and intensifying heat extremes. Here, we analyze the magnitude, distribution, and predictors of heat exposure across the City of Atlanta, within the boundaries of Fulton County. Additionally, we evaluate the extent to which identified heat exposure is addressed in Atlanta climate resilience governance. First, land surface temperature (LST) was mapped to identify the spatial patterns of heat exposure and potential socioeconomic and biophysical predictors of heat exposure were assessed. Second, government and city planning documents and policies were analyzed to assess whether the identified heat exposure risks are addressed in Atlanta climate resilience planning. The average LST of Atlanta’s 305 block groups ranges from 23.7 °C (low heat exposure) in vegetated areas to 31.5 °C (high heat exposure) in developed areas across 13 summer days used to evaluate the spatial patterns of heat exposure (June-August, 2013-2019). In contrast to nationwide patterns, census block groups with larger historically marginalized populations (predominantly Black, less education, lower income) outside of Atlanta’s urban core display weaker relationships with LST (slopes ≈ 0) and are among the cooler regions of the city. Climate governance analysis revealed that although there are few strategies for heat resilience in Atlanta (n=12), the majority are focused on the city’s warmest region, the urban core, characterized by the city’s largest extent of impervious surface. These strategies prioritize protecting and expanding the city’s urban tree canopy, which has kept most of Atlanta’s marginalized communities under lower levels of outdoor heat exposure. Such a tree canopy can serve as an example of heat resilience for many cities across the United States and the globe

    Integrating existing climate adaptation planning into future visions: A strategic scenario for the central Arizona–Phoenix region

    Get PDF
    Cities face a number of challenges to ensure that people’s well-being and ecosystem integrity are not only maintained but improved for current and future generations. Urban planning must account for the diverse and changing interactions among the social, ecological, and technological systems (SETS) of a city. Cities struggle with long-range approaches to explore, anticipate, and plan for sustainability and resilience—and scenario development is one way to address this need. In this paper, we present the framework for developing what we call ‘strategic’ scenarios, which are scenarios or future visions created from governance documents expressing unrealized municipal priorities and goals. While scenario approaches vary based on diverse planning and decision-making objectives, only some offer tangible, systemic representations of existing plans and goals for the future that can be explored as an assessment and planning tool for sustainability and resilience. Indeed, the strategic scenarios approach presented here (1) emphasizes multi-sectoral and interdisciplinary interventions; (2) identifies systemic conflicts, tradeoffs, and synergies among existing planning goals; and (3) incorporates as yet unrealized goals and strategies representative of urban short-term planning initiatives. We present an example strategic scenario for the Central Arizona–Phoenix metropolitan region, and discuss the utility of the strategic scenario in long-term thinking for future sustainability and resilience in urban research and practice. This approach brings together diverse—sometimes competing—strategies and offers the opportunity to explore outcomes by comparing and contrasting their implications and tradeoffs, and evaluating the resulting strategic scenario against scenarios developed through alternative, participatory approaches

    Random polynomials, random matrices, and LL-functions

    Full text link
    We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.Comment: Added background material. Final version. To appear in Nonlinearit

    A Framework for Resilient Urban Futures

    Get PDF
    Resilient urban futures provides a social–ecological–technological systems (SETS) perspective on promoting and understanding resilience. This chapter introduces the concepts, research, and practice of urban resilience from the Urban Resilience to Extremes Sustainability Research Network (UREx SRN). It describes conceptual and methodological approaches to address how cities experience extreme weather events, adapt to climate resilience challenges, and can transform toward sustainable and equitable future

    Social, Ecological, and Technological Strategies for Climate Adaptation

    Get PDF
    Resilient cities are able to persist, grow, and even transform while keeping their essential identities in the face of external forces like climate change, which threatens lives, livelihoods, and the structures and processes of the urban environment (United Nations Office for Disaster Risk Reduction, How to make cities more resilient: a handbook for local government leaders. Switzerland, Geneva, 2017). Scenario development is a novel approach to visioning resilient futures for cities. As an instrument for synthesizing data and envisioning urban futures, scenarios combine diverse datasets such as biophysical models, stakeholder perspectives, and demographic information (Carpenter et al. Ecol Soc 20:10, 2015). As a tool to envision alternative futures, participatory scenario development explores, identifies, and evaluates potential outcomes and tradeoffs associated with the management of social–ecological change, incorporating multiple stakeholder’s collaborative subjectivity (Galafassi et al. Ecol Soc 22:2, 2017). Understanding the current landscape of city planning and governance approaches is important in developing city-specific scenarios. In particular, assessing municipal planning strategies through the lens of interactive social–ecological–technological systems (SETS) provides useful insight into the dynamics and interrelationships of these coupled systems (da Silva et al. Sustain Dev 4(2):125–145, 2012). An assessment of existing municipal strategies can also be used to inform future adaptation scenarios and strategic plans addressing extreme weather events. With the scenario development process guiding stakeholders in generating goals and visions through participatory workshops, the content analysis of governance planning documents from the SETS perspective provides key insight on specific strategies that have been considered (or overlooked) in cities. In this chapter, we (a) demonstrate an approach to examine how cities define and prioritize climate adaptation strategies in their governance planning documents, (b) examine how governance strategies address current and future climate vulnerabilities as exemplified by nine cities in North and Latin America where we conducted a content analysis of municipal planning documents, and (c) suggest a codebook to explore the diverse SETS strategies proposed to address climate challenges—specifically related to extreme weather events such as heat, drought, and flooding

    Setting the Stage for Co-Production

    Get PDF
    Participatory scenario visioning aims to expose, integrate, and reconcile perspectives and expectations about a sustainable, resilient future from a variety of actors and stakeholders. This chapter considers the settings in which transdisciplinary participatory visioning takes place, highlighting lessons learned from the Urban Resilience to Extremes Sustainability Research Network (UREx SRN). It reflects on the benefits of engaging in the co-production process and the challenges that must be considered amid this process

    Assessing Future Resilience, Equity, and Sustainability in Scenario Planning

    Get PDF
    In the absence of strong international agreements, many municipal governments are leading efforts to build resilience to climate change in general and to extreme weather events in particular. However, it is notoriously difficult to guide and activate processes of change in complex adaptive systems such as cities. Participatory scenario planning with city professionals and members of civil society provides an opportunity to coproduce positive visions of the future. Yet, not all visions are created equal. In this chapter, we introduce the Resilience, Equity, and Sustainability Qualitative (RESQ) assessment tool that we have applied to compare positive scenario visions for cities in the USA and Latin America. We use the tool to examine the visions of the two desert cities in the Urban Resilience to Extreme Events Sustainability Research Network (UREx SRN), which are Hermosillo (Mexico) and Phoenix (United States)

    Anticipatory Resilience Bringing Back the Future into Urban Planning and Knowledge Systems

    Get PDF
    Anticipatory thinking is a critical component in urban planning practices and knowledge systems in an era of unpredictability and conflicting expectations of the future. This chapter introduces “anticipatory resilience” as a futures-oriented knowledge system that intentionally addresses uncertain climate conditions and explores alternative, desirable future states. It suggests a portfolio of tools suitable for building long-term foresight capacity in urban planning. Examples of knowledge systems interventions are presented to explore the trade-offs, constraints, possibilities, and desires of diverse future scenarios co-generated in settings with people that hold different perspectives, knowledge, and expectations
    • 

    corecore